3.7.40 \(\int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx\) [640]

3.7.40.1 Optimal result
3.7.40.2 Mathematica [A] (verified)
3.7.40.3 Rubi [A] (verified)
3.7.40.4 Maple [B] (warning: unable to verify)
3.7.40.5 Fricas [B] (verification not implemented)
3.7.40.6 Sympy [F]
3.7.40.7 Maxima [F]
3.7.40.8 Giac [F(-2)]
3.7.40.9 Mupad [F(-1)]

3.7.40.1 Optimal result

Integrand size = 35, antiderivative size = 228 \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx=\frac {(i A-B) \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{\sqrt {i a-b} d}+\frac {2 B \text {arctanh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{\sqrt {b} d}-\frac {(i A+B) \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{\sqrt {i a+b} d} \]

output
(I*A-B)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot( 
d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d/(I*a-b)^(1/2)+2*B*arctanh(b^(1/2)*tan(d*x+ 
c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d/b^(1/ 
2)-(I*A+B)*arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))* 
cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d/(I*a+b)^(1/2)
 
3.7.40.2 Mathematica [A] (verified)

Time = 1.60 (sec) , antiderivative size = 225, normalized size of antiderivative = 0.99 \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx=\frac {\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left (\sqrt [4]{-1} \left (-\frac {(A-i B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {-a+i b}}+\frac {(A+i B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {a+i b}}\right )+\frac {2 \sqrt {a} B \text {arcsinh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+\frac {b \tan (c+d x)}{a}}}{\sqrt {b} \sqrt {a+b \tan (c+d x)}}\right )}{d} \]

input
Integrate[(A + B*Tan[c + d*x])/(Sqrt[Cot[c + d*x]]*Sqrt[a + b*Tan[c + d*x] 
]),x]
 
output
(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((-1)^(1/4)*(-(((A - I*B)*ArcTan[(( 
-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sq 
rt[-a + I*b]) + ((A + I*B)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + d 
*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqrt[a + I*b]) + (2*Sqrt[a]*B*ArcSinh[(Sq 
rt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]]*Sqrt[1 + (b*Tan[c + d*x])/a])/(Sqrt[b]* 
Sqrt[a + b*Tan[c + d*x]])))/d
 
3.7.40.3 Rubi [A] (verified)

Time = 1.34 (sec) , antiderivative size = 189, normalized size of antiderivative = 0.83, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4729, 3042, 4097, 3042, 4099, 3042, 4098, 104, 216, 219, 4117, 65, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\sqrt {\tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\sqrt {\tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4097

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\int \frac {A \tan (c+d x)-B}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+B \int \frac {\tan ^2(c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\int \frac {A \tan (c+d x)-B}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+B \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )\)

\(\Big \downarrow \) 4099

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} (-B+i A) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx-\frac {1}{2} (B+i A) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+B \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} (-B+i A) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx-\frac {1}{2} (B+i A) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+B \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )\)

\(\Big \downarrow \) 4098

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {(B+i A) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}+\frac {(-B+i A) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}+B \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )\)

\(\Big \downarrow \) 104

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {(-B+i A) \int \frac {1}{\frac {(i a-b) \tan (c+d x)}{a+b \tan (c+d x)}+1}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}-\frac {(B+i A) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+B \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {(B+i A) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+B \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {(-B+i A) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (B \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {(-B+i A) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}-\frac {(B+i A) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )\)

\(\Big \downarrow \) 4117

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {B \int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{d}+\frac {(-B+i A) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}-\frac {(B+i A) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )\)

\(\Big \downarrow \) 65

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 B \int \frac {1}{1-\frac {b \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {(-B+i A) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}-\frac {(B+i A) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {(-B+i A) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}-\frac {(B+i A) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}+\frac {2 B \text {arctanh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {b} d}\right )\)

input
Int[(A + B*Tan[c + d*x])/(Sqrt[Cot[c + d*x]]*Sqrt[a + b*Tan[c + d*x]]),x]
 
output
(((I*A - B)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d 
*x]]])/(Sqrt[I*a - b]*d) + (2*B*ArcTanh[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[ 
a + b*Tan[c + d*x]]])/(Sqrt[b]*d) - ((I*A + B)*ArcTanh[(Sqrt[I*a + b]*Sqrt 
[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a + b]*d))*Sqrt[Cot[c + 
 d*x]]*Sqrt[Tan[c + d*x]]
 

3.7.40.3.1 Defintions of rubi rules used

rule 65
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2   Sub 
st[Int[1/(b - d*x^2), x], x, Sqrt[b*x]/Sqrt[c + d*x]], x] /; FreeQ[{b, c, d 
}, x] &&  !GtQ[c, 0]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4097
Int[(Sqrt[(a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)]))/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> In 
t[Simp[a*A - b*B + (A*b + a*B)*Tan[e + f*x], x]/(Sqrt[a + b*Tan[e + f*x]]*S 
qrt[c + d*Tan[e + f*x]]), x] + Simp[b*B   Int[(1 + Tan[e + f*x]^2)/(Sqrt[a 
+ b*Tan[e + f*x]]*Sqrt[c + d*Tan[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 
0]
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.7.40.4 Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 0.98 (sec) , antiderivative size = 1887832, normalized size of antiderivative = 8279.96

\[\text {output too large to display}\]

input
int((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2),x)
 
output
result too large to display
 
3.7.40.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 10230 vs. \(2 (180) = 360\).

Time = 4.35 (sec) , antiderivative size = 20493, normalized size of antiderivative = 89.88 \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx=\text {Too large to display} \]

input
integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2),x, algo 
rithm="fricas")
 
output
Too large to include
 
3.7.40.6 Sympy [F]

\[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx=\int \frac {A + B \tan {\left (c + d x \right )}}{\sqrt {a + b \tan {\left (c + d x \right )}} \sqrt {\cot {\left (c + d x \right )}}}\, dx \]

input
integrate((A+B*tan(d*x+c))/cot(d*x+c)**(1/2)/(a+b*tan(d*x+c))**(1/2),x)
 
output
Integral((A + B*tan(c + d*x))/(sqrt(a + b*tan(c + d*x))*sqrt(cot(c + d*x)) 
), x)
 
3.7.40.7 Maxima [F]

\[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx=\int { \frac {B \tan \left (d x + c\right ) + A}{\sqrt {b \tan \left (d x + c\right ) + a} \sqrt {\cot \left (d x + c\right )}} \,d x } \]

input
integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2),x, algo 
rithm="maxima")
 
output
integrate((B*tan(d*x + c) + A)/(sqrt(b*tan(d*x + c) + a)*sqrt(cot(d*x + c) 
)), x)
 
3.7.40.8 Giac [F(-2)]

Exception generated. \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2),x, algo 
rithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(con 
st gen &
 
3.7.40.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx=\int \frac {A+B\,\mathrm {tan}\left (c+d\,x\right )}{\sqrt {\mathrm {cot}\left (c+d\,x\right )}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}} \,d x \]

input
int((A + B*tan(c + d*x))/(cot(c + d*x)^(1/2)*(a + b*tan(c + d*x))^(1/2)),x 
)
 
output
int((A + B*tan(c + d*x))/(cot(c + d*x)^(1/2)*(a + b*tan(c + d*x))^(1/2)), 
x)